Analysis of extreme meteorological events in the central Andes of Peru using a set of specialized instruments

Artículo

5 de abril de 2021

Resumen:
A set of instruments to measure several physical, microphysical, and radiative properties of the atmosphere and clouds are essential to identify, understand and, subsequently, forecast and prevent the effects of extreme meteorological events, such as severe rainfall, hailstorms, frost events and high pollution events, that can occur with some regularity in the central Andes of Peru. However, like many other Latin American countries, Peru lacks an adequate network of meteorological stations to identify and analyze extreme meteorological events. To partially remedy this deficiency, the Geophysical Institute of Peru has installed a set of specialized sensors (LAMAR) on the Huancayo observatory (12.04∘ S, 75.32∘ W, 3350 m ASL), located in the Mantaro river basin, which is a part of the central Andes of Peru, especially in agricultural areas. LAMAR consists of a set of sensors that are used to measure the main atmosphere and soil variables located in a 30-meter-high tower. It also has a set of high-quality radiation sensors (BSRN station) that helps measure the components of short-wave (SW) (global, diffuse, direct and reflected) and long-wave (LW) (emitted and incident) irradiance mounted in a 6-meter-high tower. Moreover, to analyze the microphysics properties of clouds and rainfall, LAMAR includes a set of profiler radars: A Ka-band cloud profiler (MIRA-35c), a UHF wind profiler (CLAIRE), and a VHF wind profiler (BLTR), along with two disdrometers (PARSIVEL2) and two rain gauges pluviometers. The present study performs a detailed dynamic and energetic analysis of two extreme rainfall events, two intense frost events, and three high-pollution events occurring on the Huancayo observatory between 2018 and 2019...
Autores:
Flores Rojas, José Luis; Silva Vidal, Yamina; Suárez Salas, Luis; Estevan, René; Valdivia Prado, Jairo Michael; Saavedra Huanca, Miguel; Giráldez, Lucy; Piñas-Laura, Manuel; Scipión, Danny; Milla, Marco; Kumar, Shailendra; Martínez Castro, Daniel 
Fecha:
2021-03-21
URL:
http://hdl.handle.net/20.500.12816/4936

Esta publicación pertenece al compendio Repositorio Geofísico Nacional (REGEN)